jadhosn@asu.edu 480-417-8889

linkedin.com/in/jadahosn jadhosn.github.io

EDUCATION

Arizona State University

Tempe, AZ

MS, Computer Engineering

May 2019

Scholarship: Selected from 15,000 applicants for a full merit scholarship at Arizona State University

American University of Beirut

Beirut, Lebanon

BE, Computer Engineering, Minor in Business Administration

June 2017

TECHNICAL SKILLS

Languages: Advanced: Python, R, SQL; Intermediate: C/C++, Java, PostgreSQL; Beginner: Scala Machine Learning: Linear and Logistic Regression, LightGBM, SHAP, Bayesian Optimization Developer Tools: Git, Docker, Azure, Azure Machine Learning, GCP, AWS, PyCharm, Jupyter Libraries: pandas, NumPy, pySpark, Matplotlib, seaborn, scipy, ggplot2, knitr, tidyr, SHAP, hyper-opt Related Coursework: Statistical Machine Learning, Artificial Intelligence, Mobile Computing, Distributed Database

Systems, Data Visualization, Databases, Object Oriented Programming, Algorithms and Data Structures

EXPERIENCE

DriveTime

Data Scientist/Engineer

June 2019 - Present

Tempe, AZ

Credit Scoring (Python, Azure Machine Learning, LightGBM, SHAP)

- Enhanced model performance by 30% compared to legacy leading to an expected \$35 million increase in annual profits using advanced ML techniques and Bayesian hyperparameter tuning
- Incorporated state-of-the-art model explainability algorithm (SHAP) to reduce training time from 16 hours to 1 hour by slashing the number of features by 94% while maintaining consistent model performance on unseen data
- Introduced a profit calculator that compares the cost of data products to their predictive lift to rank these products by their net economical impact

Automated Machine Learning Pipelines (Python, CI/CD, AzureML, AutoML, Docker, Jupyter)

- Boosted Machine Learning development and deployment velocity by implementing Python pipelines to train, evaluate and deploy ML models using CI/CD and AzureML
- Engineered a parallelizable Python pipeline using Azure's AutoML to explore 60 datasets against 8 ML techniques. Project was featured in Microsoft Build 2020 (video link)
- Built consensus around new technologies and pushed for paradigms that cut the team's Azure consumption by 50% by designing a python template that allows hands-on local debugging before deployment to remote VMs
- Initiated a collaboration channel with AzureML product engineers and industry peers to swap expertise and enhance my team's AzureML system design and development practices

Data Science/Business Intelligence Intern

 $May\ 2018-May\ 2019$

Tempe, AZ

Vehicle Depreciation (R, ggplot2, tidyr, SQL, SQL R Services)

• Devised and deployed a predictive model in R to rank order vehicles by their expected depreciation (while controlling for the age of the vehicle)

Model Monitoring (SQL, Informatica, R, knitr, ggplot2, tidyr)

• Engineered an automated nightly data pipeline that monitors models' efficacy, input/output data drift and generates an automated monthly report for stakeholders

Projects

DriveTime

Peer-to-peer lending model (Python, flask, Azure, Docker)

- Trained a classification model (Logistic Regression) to predict the probability of default of p2p loans
- Setup a real-time scoring endpoint using Flask on Azure to ingest, validate and score input data payload